Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The set Q consists of the following terms:
sum1(0)
sum1(s1(x0))
+2(x0, 0)
+2(x0, s1(x1))
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
SUM1(s1(x)) -> SUM1(x)
SUM1(s1(x)) -> +12(sum1(x), s1(x))
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The set Q consists of the following terms:
sum1(0)
sum1(s1(x0))
+2(x0, 0)
+2(x0, s1(x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
SUM1(s1(x)) -> SUM1(x)
SUM1(s1(x)) -> +12(sum1(x), s1(x))
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The set Q consists of the following terms:
sum1(0)
sum1(s1(x0))
+2(x0, 0)
+2(x0, s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The set Q consists of the following terms:
sum1(0)
sum1(s1(x0))
+2(x0, 0)
+2(x0, s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
+12(x, s1(y)) -> +12(x, y)
Used argument filtering: +12(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The set Q consists of the following terms:
sum1(0)
sum1(s1(x0))
+2(x0, 0)
+2(x0, s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
SUM1(s1(x)) -> SUM1(x)
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The set Q consists of the following terms:
sum1(0)
sum1(s1(x0))
+2(x0, 0)
+2(x0, s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
SUM1(s1(x)) -> SUM1(x)
Used argument filtering: SUM1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
sum1(0) -> 0
sum1(s1(x)) -> +2(sum1(x), s1(x))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The set Q consists of the following terms:
sum1(0)
sum1(s1(x0))
+2(x0, 0)
+2(x0, s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.